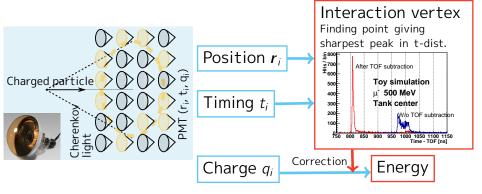
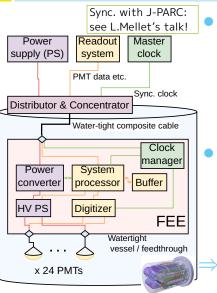

Shota Izumiyama (Tokyo Inst. of Tech.) for Hyper-Kamiokande Collaboration NuFACT 2022 (Utah), 2 Aug. 2022 ⇒ 3rd gen. Water Cherenkov Detector

+ J-PARC ν beam complex



 \Rightarrow Energy: 1 MeV \sim 1 TeV


Operation: 2027 \sim

- Cherenkov Ring Imaging Detector
 - \Rightarrow Ring shape with 5-dimension (r, t, q)

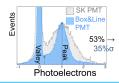
 20-inch PMT: improved from SK → twice better Timing res., quantum eff. × collection eff., charge res.

Electronics of Far Detector

- Photosensors:
 - Inner detector (ID):
 - \sim 20,000 20-inch PMTs
 - $+\sim$ 1,000 mPMTs
 - Outer detector (OD):
 - \sim 8,000 3-inch PMTs
- 1,000 underwater vessels
 - Front-End Electronics (FEE) and HV for ID+OD PMT
 - ⇒ Reliability: critical
 - Final design in Nov. 2023

Requirement to Digitizer (1–50 MeV) 5/15

Low energy: 1–50 MeV



- Num. of PMT pulse $\sim 10/\text{MeV}$
- → Single photon detection
- Nearby SN:
 - \sim 180 M events in 10 s
- \Rightarrow PMT signal rate \sim 1 MHz

PMT response

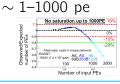
- Timing res. ~ 1.1 ns
- Charge res. \sim 31 %
- Q dynamic range
 ~ 1–1000 pe

Requirements to digitizer

- Low noise & low threshold
- Maximizing PMT performance
 - Timing resolution

Requirement to Digitizer (> 100 MeV) 6/15

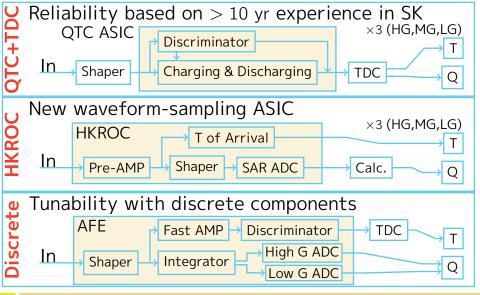
High energy \Rightarrow > 100 MeV

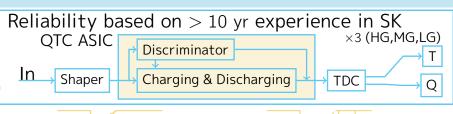


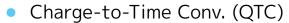
- \Rightarrow Dynamic range of \sim 1000 p.e.
 - Decay-electron from muon
 - ID of invisible μ , π
- \Rightarrow Lifetime \sim 2.2 μ s

PMT response

- Timing res. ~ 1.1 ns
- Charge res. \sim 31 %
- Q dynamic range

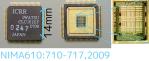



Requirements to digitizer


- Maximizing PMT performance
 - Charge res. & dynamic range & linearity
- Deadtime < 1 μs

Three Options for HK Digitizer

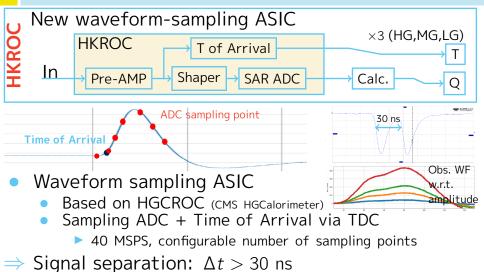
7/15



Custom ASIC for SK

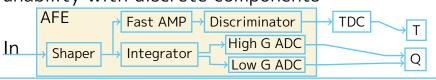
PMT signal

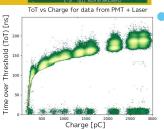
- Established reliability by > 10 yr operation in SK
- Time-to-Digital Conv. (TDC)
 - Newly developed in FPGA for HK



Kintex-7 160T

Hit timing


Option2: HKROC


Reduced deadtime ⇒ decay-e and nearby SN

Tunability with discrete components

- Highly tunable / flexible circuit with discrete parts
 - Components: op-amp, ADC
 - Time over Threshold (ToT)
 - Complementary information with integrated Q by ADC
 - ⇒ May help to separate noise / pre-pulse / late-pulse

R&D Status: Full Functional Model 11/15

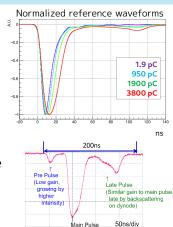
Prototypes of digitizers for performance evaluation

QTC+TDC

HKROC

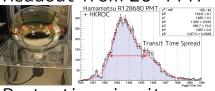
HKROC Chip

Discrete


SoM: TDC & system

24 ch analog frontends

- → Next revision: single board with all functions
 - Integration with OD digitizers, size optimization etc.

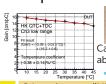

Evaluation of Digitizers

- 1. Basic performance with FG
 - Deterministic signal
 - Stable noise, and configurable pulse timing and amplitude
- 2. Confirmation with PMT
 - AC coupled system
 - Stochastic signal
 - ▶ Noise and pre-/late-/after-pulse
 - Termination and reflections
 - Handling of baseline fluctuation
- → Important cross validation
- 3. Response to environment: ESD, temperature
- 4. Circuit simulation: power, heat, reflection etc.

Evaluation of Digitizers (example)


Readout from 20" PMT

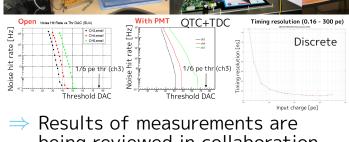
PMT characters are reproduced: charge res., timing res., linearity, etc.

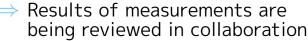

Protection circuit

No degradation after ESD test

Temperature coefficient

Calibrator: variable amplitude


Many other tests (all options): reflection, cross-talk, rate capability, FIT calc. etc.


"HK Digitizer Options" 2 Aug (NuFACT2022)

Status of Measurements

Measuring performance in parallel

Basic requirements: satisfied

- Hyper-Kamiokande: water Cherenkov detector
 - $\bullet~$ FV \sim 190 kt, 20,000 of 20" PMTs + 1,000 mPMTs
 - Planning to start operation in 2027
- Three options of digitizer for 20" PMTs
 - QTC ASIC + TDC: experience over 10 yr in SK
 - **HKROC**: new waveform-sampling ASIC
 - Discrete type: tunability & flexibility
- Schedule
 - Collaboration review is ongoing to select one option
 - ⇒ Starting R&D of integrated design of ID and OD PMTs

in vessel and underwater

Starting designing of massproduction model

Appendix

Requirements to Digitizer

Basic performance required to digitizers

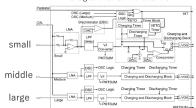
Timing resolution	0.3 ns (1 pe) 0.2 ns (> 5 pe)
Charge resolution	0.1 pe (< 10 pe) 1 % (> 10 pe)
Charge dynamic range	1-1250 pe
Charge linearity	≤ 1 %
Discri. threshold	< 1/6 pe

Practical characters

Dead-time, hit rate, failure rate, cross talk, SN ratio, temperature coefficient, ESD tolerance, power consumption, etc.

QTC+TDC: QTC detail

QTC ASIC

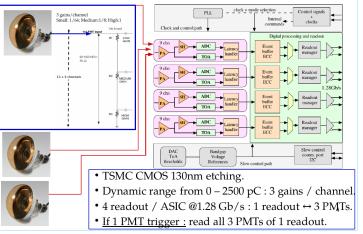

· developed and used for SK since 2008

* FIT=# of failures in 10^9 hours

- ✓ no failure in ID = low failure rate confirmed (FIT<1.68)
 </p>
- 3 range channels cover dynamic range ~1250pe
 - ✓ triggers of 3 range discriminators are ORed.
- production line $0.35 \,\mu$ m CMOS is still active
 - ✓ We propose to use QTC with updated peripherals (TDC, input circuit, etc) for HK.

Diagram for 1PMT channel

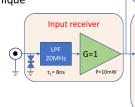
Table 1: OTC specification

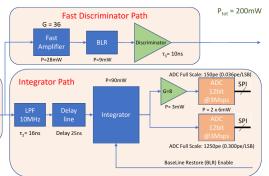

Item	
Number of input per chip	3 PMT channels
Trigger	self trigger with constant threshold
Threshold	-0.3 ~ -14 mV
Input voltage	> -3 V
Dynamic range	0.25 ~2,500 pC with 3 ranges
Charge gate	50~500 nsec (6 bit)
Processing time	316~766 nsec (6 bit)
Charge Resolution	~0.15 pC (< 50 pC)
Charge (Non-)Linearity	< ±1%
Timing Resolution	0.2 ns (-3 mV)
Power dissipation	260 mW/chip
Process	0.35 μm CMOS process
Package	100 pin COFP package

HKROC: block diagram

The HKROC digitizer

Based on HKROC chip: 12 PMTs


36 channels (high,medium,low gain)



FE Discrete Digitizer Board: FE circuit design

- The circuit is based on discrete ICs
 - · Developed by NA group
- PMT input signal feeds 2 paths:
 - Integrator for CHARGE measurement
 - Fast Discriminator for hit TIMING
- Final design uses Baseline Restore Enable technique

